Electrokinetic energy conversion efficiency in nanofluidic channels.

نویسندگان

  • Frank H J van der Heyden
  • Douwe Jan Bonthuis
  • Derek Stein
  • Christine Meyer
  • Cees Dekker
چکیده

We theoretically evaluate the prospect of using electrokinetic phenomena to convert hydrostatic energy to electrical power. An expression is derived for the energy conversion efficiency of a two-terminal fluidic device in terms of its linear electrokinetic response properties. For a slitlike nanochannel of constant surface charge density, we predict that the maximum energy conversion efficiency occurs at low salt concentrations. An analytic expression for the regime of strong double-layer overlap reveals that the efficiency depends only on the ratio of the channel height to the Gouy-Chapman length, and the product of the viscosity and the counterion mobility. We estimate that an electrokinetic energy conversion device could achieve a maximum efficiency of 12% for simple monovalent ions in aqueous solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices

We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and ...

متن کامل

Slip-enhanced electrokinetic energy conversion in nanofluidic channels.

We investigate theoretically the influence of hydrodynamic slip at the surface of a nanofluidic channel on the efficiency with which electrokinetic phenomena can be used to convert hydrostatic energy to electrical power. Slip is introduced by applying the Navier boundary condition to the pressure-driven and the electro-osmotic components of the fluid velocity. A strong enhancement in the effici...

متن کامل

Effects of Polymer Length and Salt Concentration on the Transport of ssDNA in Nanofluidic Channels.

Electrokinetic phenomena in micro/nanofluidic channels have attracted considerable attention because precise control of molecular transport in liquids is required to optically and electrically capture the behavior of single molecules. However, the detailed mechanisms of polymer transport influenced by electroosmotic flows and electric fields in micro/nanofluidic channels have not yet been eluci...

متن کامل

Nanofluidic diodes based on nanotube heterojunctions.

The mechanism of tuning charge transport in electronic devices has recently been implemented into the nanofluidic field for the active control of ion transport in nanoscale channels/pores. Here we report the first synthesis of longitudinal heterostructured SiO(2)/Al(2)O(3) nanotubes. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ...

متن کامل

Short channel effects on electrokinetic energy conversion in solid-state nanopores

The ion selectivity of nanopores due to the wall surface charges is capable of inducing strong coupling between fluidic and ionic motion within the system. This interaction opens up the prospect of operating nanopores as nanoscale devices for electrokinetic energy conversion. However, the very short channel lengths make the ionic movement and fluidics inside the pore to be substantially affecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2006